Modelling of fraction of absorbed photosynthetically active radiation in vegetation canopy and its validation

Biosystems Engineering(2015)

引用 6|浏览19
暂无评分
摘要
The Fraction of Absorbed Photosynthetically Active Radiation (FPAR) has been identified as one of the key parameters in calculating ecosystem productivity. The objective of this paper is to model the vertical profile of FPAR in the canopy using a radiative transfer model, the Modified Simultaneous Heat and Water (MSHAW) radiation model. Model analysis indicated that the vertical distribution of the canopy FPAR was dependent on the leaf area index (LAI), average leaf orientation angle (ALA), solar position, and sky conditions. In the validation of the MSHAW model with three varieties of wheat leaf profile at different growth stages, two parabolic functions were developed to approximately reconstruct the shape of the wheat leaf for the first time and, consequently, the vertical profiles of LAI and ALA used to drive the MSHAW model were estimated. The validation results indicated that the estimated FPAR was close to the measurements made with the SunScan canopy analysis system with an RMSE of approximately 0.15 for the continuous canopy. Finally, this paper also discusses a promising method to perform time normalisation on canopy FPAR data using multiple temporal remotely sensed data observations and to retrieve FPAR from remotely sensed data based on the analysis of the MSHAW model. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
FPAR,Radiative transfer model,Vertical profile,MSHAW
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要