Impact of Rock Heterogeneity on Interactions of Microbial-Enhanced Oil Recovery Processes

Transport in Porous Media(2011)

引用 6|浏览6
暂无评分
摘要
Residual oil saturation reduction and microbial plugging are two crucial factors in microbial-enhanced oil recovery (MEOR) processes. In our previous study, the residual saturation was defined as a nonlinear function of the trapping number, and an explicit relation between the residual oil saturation and the trapping number was incorporated into a fully coupled biological (B) and hydrological (H) finite element model. In this study, the BH model is extended to consider the impact of rock heterogeneity on microbial-enhanced oil recovery phenomena. Numerical simulations of core flooding experiments are performed to demonstrate the influences of different parameters controlling the onset of oil mobilization. X-ray CT core scans are used to construct numerical porosity-permeability distributions for input to the simulations. Results show clear fine-scale fingering processing, and that trapping phenomena have significant effects on residual oil saturation and oil recovery in heterogeneous porous media. Water contents and bacterial distributions for heterogeneous porous media are compared with those for homogenous porous media. The evolution of the trapping number distribution is directly simulated and visualized. It is shown that the oil recovery efficiency of EOR/MEOR will be lower in heterogeneous media than in homogeneous media, largely due to the difficulty in supplying surfactant to unswept low-permeability zones. However, MEOR also provides efficient plugging along high-permeability zones which acts to increase sweep efficiency in heterogeneous media. Thus, MEOR may potentially be more suited for highly heterogeneous media than conventional EOR.
更多
查看译文
关键词
MEOR,Residual oil saturation,Rock heterogeneity,Trapping number,Simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要