谷歌浏览器插件
订阅小程序
在清言上使用

Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plastic composites

International Biodeterioration & Biodegradation(2015)

引用 44|浏览1
暂无评分
摘要
This study mainly aimed at investigating the effects of volatile chemical components of wood species on mould and termite resistance of wood plastic composites (WPC) using artificial accelerated tests. The morphology characterization of surface and fracture of WPC was estimated by SEM and digital instrument. Volatile chemical components of wood species extractives were analyzed by GC–MS. The results indicated that the sequences of mould resistance of WPC were ranked as: Cunninghamia lanceolata and Melaleuca leucadendra (level 0) > Eucalyptus grandis × Eucalyptus urophylla (level 1) > Pinus massoniana (level 2) > Liquidambar formosana and Ricinus communis (level 4). The sequences of termite resistance of WPC were ranked as: C. lanceolata (level 1, ML = 4.52%) > M. leucadendra (level 1, ML = 5.73%) > E. grandis × E. urophylla (level 1, ML = 6.48%) > L. formosana (level 2, ML = 6.72%) > P. massoniana (level 2, ML = 7.08%) > R. communis (level 3, ML = 10.40%). It was also suggested that 8-propoxy-cedrane, cedrol, α-cedrene and β-cedrene in C. lanceolata, 2,3-dihydro-2,2-dimethyl-3,7-benzofurandiol, 3-demethyl-colchicine and squalene in M. leucadendra; 2,3-dihydro-2,2-dimethyl-3,7-benzofurandiol and stigmast-4-en-3-one in E. grandis × E. urophylla were potentially crucial to provided positive effects on biodegradation resistance. Longifolene, caryophyllene and α-pinene in P. massoniana; 4-hydroxy-3,5-dimethoxy-benzaldehyde, 3,5-dimethoxy-4-hydroxycinnamaldehyde and cinnamyl cinnamate in L. formosana; 5-hydroxymethylfurfural and 1,6-anhydro-β-d-glucopyranose in R. communis led to the opposite results.
更多
查看译文
关键词
Wood plastic composites,Wood species,Mould,Termite,Volatile chemical components
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要