Abstract 2351: CDK4/FLT3 dual inhibitors as potential therapeutics for acute myeloid leukemia.

Cancer Research(2013)

引用 2|浏览46
暂无评分
摘要
CDK4 is a cyclin D dependent kinase that promotes cell cycle progression in a broad range of tumor types by phosphorylating the tumor suppressor retinoblastoma protein (Rb) and releasing transcription factor E2F. Critical involvement of the cyclin D-CDK4-Rb pathway in carcinogenesis is strongly supported by a large amount of genetic evidence. In addition, promoter methylation with consequent silencing of expression of the CDK4 inhibitor, p15, has been reported in 44-60% of acute myeloid leukemia (AML) patients. It is also well established that constitutive activation of the tyrosine kinase FLT3 via mutation contributes to the development of AML, with 30% of AML carrying such activating mutations. FLT3 tyrosine kinase inhibitors used as single agents reduce peripheral blood and bone marrow blasts in only a minority of AML patients, and the effect tends to be transient. This may be due to insufficient FLT3 inhibition, the selection of drug-resistant clones, or the independence of the cell on FLT3 signaling for proliferation and survival. In preclinical models, a synergistic effect of CDK4 inhibition and FLT3 inhibition resulting in increased apoptosis of AML cell lines was reported (Wang et al., Blood, 2007). From a HTS hit through SAR optimization led to AM-5992, a potent and orally bioavailable dual inhibitor of CDK4 and FLT3 including all FLT3 mutants reported to date. AM-5992 inhibits the proliferation of a panel of human tumor cell lines including MDA-MB-435(Rb+), colo-205(Rb+), U937(FLT3WT) and induced cell death in MOLM13(FLT3ITD), MV4-11(FLT3ITD), and even in MOLM13(FLT3ITD, D835Y) which exhibits resistance to a number of FLT3 inhibitors currently under clinical development. In mouse models of leukemia using cells with the FLT3ITD mutation, AM-5992 treatment at 150 mpk qd on days 6-16 after leukemia cell injection significantly reduced the leukemia burden and prolonged survival 11 days over that of vehicle controls. Collectively, these data support the hypothesis that simultaneously inhibition of CDK4 and FLT3 may improve the durability of clinical response in AML; and consequently that this hypothesis should be tested in the clinic. Citation Format: Zhihong Li, Kang Dai, Kathleen Keegan, Ji Ma, Mark Ragains, Jacob Kaizerman, Dustin McMinn, Jiasheng Fu, Benjamin Fisher, Michael Gribble, Lawrence R. McGee, John Eksterowicz, Cong Li, Lingming Liang, Margaret Weidner, Justin Huard, Robert Cho, Timothy Carlson, Grace M. Alba, David Hollenback, John Hill, Darrin Beaupre, Alexander Kamb, Dineli Wickramasinghe, Julio C. Medina. CDK4/FLT3 dual inhibitors as potential therapeutics for acute myeloid leukemia. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 2351. doi:10.1158/1538-7445.AM2013-2351
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要