Learning For Decentralized Control Of Multiagent Systems In Large, Partially-Observable Stochastic Environments

AAAI'16: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence(2016)

引用 9|浏览30
暂无评分
摘要
Decentralized partially observable Markov decision processes (Dec-POMDPs) provide a general framework for multiagent sequential decision-making under uncertainty. Although Dec-POMDPs are typically intractable to solve for real-world problems, recent research on macro-actions (i.e., temporally-extended actions) has significantly increased the size of problems that can be solved. However, current methods assume the underlying Dec-POMDP model is known a priori or a full simulator is available during planning time. To accommodate more realistic scenarios, when such information is not available, this paper presents a policy-based reinforcement learning approach, which learns the agent policies based solely on trajectories generated by previous interaction with the environment (e.g., demonstrations). We show that our approach is able to generate valid macro-action controllers and develop an expectation-maximization (EM) algorithm (called Policy-based EM or PoEM), which has convergence guarantees for batch learning. Our experiments show PoEM is a scalable learning method that can learn optimal policies and improve upon hand-coded "expert" solutions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要