Robust Ad-Hoc Sensor Routing (Raser) Protocol For Mobile Wireless Sensor Networks

Ad Hoc Networks(2016)

引用 21|浏览11
暂无评分
摘要
Robust Ad-hoc Sensor Routing (RASeR) is a novel protocol for data routing in mobile wireless sensor networks (MWSNs). It is designed to cope with the demanding requirements of emerging technologies, which require the reliable and low-latency delivery of packets in highly mobile conditions. RASeR uses blind forwarding, which is facilitated by a novel method of gradient maintenance. The problem of maintaining a gradient field in a changing topology, without flooding, is solved by using a global time division multiple access MAC. Furthermore, it is enhanced with the additional options of a supersede mode, to aid time-critical applications, reverse flooding, to allow sink-to-sensor commands and energy saving sleep cycles to reduce power consumption. Analytical expressions are derived and verified by simulation. RASeR is compared with the state-of-the-art MWSN routing protocols, PHASeR and MACRO, as well as the MANET protocols, AODV and OLSR. The results indicate that RASeR is a high performance protocol, which shows improvements over PHASeR, MACRO, AODV and OLSR. Tested over varying levels of mobility, scalability and traffic, the simulations yield near perfect PDR in many scenarios, as well as a low end-to-end delay, high throughput, low overhead and low energy consumption. The robustness of this protocol and its consistent reliability, low latency and additional features, makes it highly suitable to a wide number of applications. It is specifically applicable to highly mobile situations with a fixed number of nodes and small payloads. (C) 2016 The Authors. Published by Elsevier B.V.
更多
查看译文
关键词
Mobile,Routing,Network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要