Multi-Atlas Segmentation Using Manifold Learning With Deep Belief Networks

2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)(2016)

引用 11|浏览17
暂无评分
摘要
This paper proposes a novel combination of manifold learning with deep belief networks for the detection and segmentation of left ventricle (LV) in 2D - ultrasound (US) images. The main goal is to reduce both training and inference complexities while maintaining the segmentation accuracy of machine learning based methods for non-rigid segmentation methodologies. The manifold learning approach used can be viewed as an atlas-based segmentation. It partitions the data into several patches. Each patch proposes a segmentation of the LV that somehow must be fused. This is accomplished by a deep belief network (DBN) multi-classifier that assigns a weight for each patch LV segmentation. The approach is thus threefold: (i) it does not rely on a single segmentation, (ii) it provides a great reduction in the rigid detection phase that is performed at lower dimensional space comparing with the initial contour space, and (iii) DBN's allows for a training process that can produce robust appearance models without the need of large annotated training sets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要