ATF3 controls proliferation of osteoclast precursor and bone remodeling

SCIENTIFIC REPORTS(2016)

引用 26|浏览28
暂无评分
摘要
Bone homeostasis is maintained by the sophisticated coupled actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Here we identify activating transcription factor 3 (ATF3) as a pivotal transcription factor for the regulation of bone resorption and bone remodeling under a pathological condition through modulating the proliferation of osteoclast precursors. The osteoclast precursor-specific deletion of ATF3 in mice led to the prevention of receptor activator of nuclear factor-κB (RANK) ligand (RANKL)-induced bone resorption and bone loss, although neither bone volume nor osteoclastic parameter were markedly altered in these knockout mice under the physiological condition. RANKL-dependent osteoclastogenesis was impaired in vitro in ATF3-deleted bone marrow macrophages (BMM). Mechanistically, the deficiency of ATF3 impaired the RANKL-induced transient increase in cell proliferation of osteoclast precursors in bone marrow in vivo as well as of BMM in vitro . Moreover, ATF3 regulated cyclin D1 mRNA expression though modulating activator protein-1-dependent transcription in the osteoclast precursor and the introduction of cyclin D1 significantly rescued the impairment of osteoclastogenesis in ATF3-deleted BMM. Therefore, these findings suggest that ATF3 could have a pivotal role in osteoclastogenesis and bone homeostasis though modulating cell proliferation under pathological conditions, thereby providing a target for bone diseases.
更多
查看译文
关键词
Osteoimmunology,Transcriptional regulatory elements,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要