Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of Lon1 in mitochondrial protein homeostasis.

PLANT JOURNAL(2017)

引用 39|浏览26
暂无评分
摘要
Mitochondrial Lon1 loss impairs oxidative phosphorylation complexes and TCA enzymes and causes accumulation of specific mitochondrial proteins. Analysis of over 400 mitochondrial protein degradation rates using N-15 labelling showed that 205 were significantly different between wild type (WT) and lon1-1. Those proteins included ribosomal proteins, electron transport chain subunits and TCA enzymes. For respiratory complexes I and V, decreased protein abundance correlated with higher degradation rate of subunits in total mitochondrial extracts. After blue native separation, however, the assembled complexes had slow degradation, while smaller subcomplexes displayed rapid degradation in lon1-1. In insoluble fractions, a number of TCA enzymes were more abundant but the proteins degraded slowly in lon1-1. In soluble protein fractions, TCA enzymes were less abundant but degraded more rapidly. These observations are consistent with the reported roles of Lon1 as a chaperone aiding the proper folding of newly synthesized/imported proteins to stabilise them and as a protease to degrade mitochondrial protein aggregates. HSP70, prohibitin and enzymes of photorespiration accumulated in lon1-1 and degraded slowly in all fractions, indicating an important role of Lon1 in their clearance from the proteome.
更多
查看译文
关键词
mitochondria,protein degradation,Lon1,protease,chaperone,complex I,complex V,assembly,Arabidopsis thaliana
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要