Asymptotically Optimal Amplifiers for the Moran Process.

Theoretical Computer Science(2019)

引用 20|浏览62
暂无评分
摘要
We study the Moran process as adapted by Lieberman, Hauert and Nowak. This is a model of an evolving population on a graph or digraph where certain individuals, called “mutants” have fitness r and other individuals, called “non-mutants” have fitness 1. We focus on the situation where the mutation is advantageous, in the sense that r>1. A family of digraphs is said to be strongly amplifying if the extinction probability tends to 0 when the Moran process is run on digraphs in this family. The most-amplifying known family of digraphs is the family of megastars of Galanis et al. We show that this family is optimal, up to logarithmic factors, since every strongly-connected n-vertex digraph has extinction probability Ω(n−1/2). Next, we show that there is an infinite family of undirected graphs, called dense incubators, whose extinction probability is O(n−1/3). We show that this is optimal, up to constant factors. Finally, we introduce sparse incubators, for varying edge density, and show that the extinction probability of these graphs is O(n/m), where m is the number of edges. Again, we show that this is optimal, up to constant factors.
更多
查看译文
关键词
Strong amplifiers,Moran process,Fixation probability,Extremal graph theory,Markov chains
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要