Monoidal computer III: A coalgebraic view of computability and complexity

Dusko Pavlovic, Muzamil Yahia

COALGEBRAIC METHODS IN COMPUTER SCIENCE (CMCS 2018)(2018)

引用 0|浏览17
暂无评分
摘要
Monoidal computer is a categorical model of intensional computation, where many different programs correspond to the same input-output behavior. The upshot of yet another model of computation is that a categorical formalism should provide a much needed high level language for theory of computation, flexible enough to allow abstracting away the low level implementation details when they are irrelevant, or taking them into account when they are genuinely needed. A salient feature of the approach through monoidal categories is the formal graphical language of string diagrams, which supports visual reasoning about programs and computations. In the present paper, we provide a coalgebraic characterization of monoidal computer. It turns out that the availability of interpreters and specializers, that make a monoidal category into a monoidal computer, is equivalent with the existence of a *universal state space*, that carries a weakly final state machine for any pair of input and output types. Being able to program state machines in monoidal computers allows us to represent Turing machines, to capture their execution, count their steps, as well as, e.g., the memory cells that they use. The coalgebraic view of monoidal computer thus provides a convenient diagrammatic language for studying computability and complexity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要