Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds

STOC '18: Symposium on Theory of Computing Los Angeles CA USA June, 2018(2017)

引用 14|浏览36
暂无评分
摘要
This paper proves the first super-logarithmic lower bounds on the cell probe complexity of dynamic boolean (a.k.a. decision) data structure problems, a long-standing milestone in data structure lower bounds. We introduce a new method for proving dynamic cell probe lower bounds and use it to prove a Ω̃(log^1.5 n) lower bound on the operational time of a wide range of boolean data structure problems, most notably, on the query time of dynamic range counting over 𝔽_2 ([Pat07]). Proving an ω( n) lower bound for this problem was explicitly posed as one of five important open problems in the late Mihai Pǎtraşcu's obituary [Tho13]. This result also implies the first ω( n) lower bound for the classical 2D range counting problem, one of the most fundamental data structure problems in computational geometry and spatial databases. We derive similar lower bounds for boolean versions of dynamic polynomial evaluation and 2D rectangle stabbing, and for the (non-boolean) problems of range selection and range median. Our technical centerpiece is a new way of "weakly" simulating dynamic data structures using efficient one-way communication protocols with small advantage over random guessing. This simulation involves a surprising excursion to low-degree (Chebychev) polynomials which may be of independent interest, and offers an entirely new algorithmic angle on the "cell sampling" method of Panigrahy et al. [PTW10].
更多
查看译文
关键词
Data Structures,Cell Probe Complexity,Lower Bounds,Range Searching,Dynamic Problems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要