Detrimental Effect Elimination Of Laser Frequency Instability In Brillouin Optical Time Domain Reflectometer By Using Self-Heterodyne Detection

SENSORS(2017)

引用 10|浏览27
暂无评分
摘要
A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 mu s in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 degrees C and 1.2 degrees C, respectively.
更多
查看译文
关键词
Brillouin optical time domain reflectometer,laser frequency instability,Brillouin linewidth,self-heterodyne detection,Rayleigh scattering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要