Minimax Gaussian Classification & Clustering

ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54(2017)

引用 24|浏览66
暂无评分
摘要
We present minimax bounds for classification and clustering error in the setting where covariates are drawn from a mixture of two isotropic Gaussian distributions. Here, we define clustering error in a discriminative fashion, demonstrating fundamental connections between classification (supervised) and clustering (unsupervised). For both classification and clustering, our lower bounds show that without enough samples, the best any classifier or clustering rule can do is close to random guessing. For classification, as part of our upper bound analysis, we show that Fisher's linear discriminant achieves a fast minimax rate Theta(1/n) with enough samples n. For clustering, as part of our upper bound analysis, we show that a clustering rule constructed using principal component analysis achieves the minimax rate with enough samples. We also provide lower and upper bounds for the high-dimensional sparse setting where the dimensionality of the covariates p is potentially larger than the number of samples n, but where the difference between the Gaussian means is sparse.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要