Automatically improving constraint models in Savile Row.

Artificial Intelligence(2017)

引用 75|浏览82
暂无评分
摘要
When solving a combinatorial problem using Constraint Programming (CP) or Satisfiability (SAT), modelling and formulation are vital and difficult tasks. Even an expert human may explore many alternatives in modelling a single problem. We make a number of contributions in the automated modelling and reformulation of constraint models. We study a range of automated reformulation techniques, finding combinations of techniques which perform particularly well together. We introduce and describe in detail a new algorithm, X-CSE, to perform Associative–Commutative Common Subexpression Elimination (AC-CSE) in constraint problems, significantly improving existing CSE techniques for associative and commutative operators such as +. We demonstrate that these reformulation techniques can be integrated in a single automated constraint modelling tool, called Savile Row, whose architecture we describe. We use Savile Row as an experimental testbed to evaluate each reformulation on a set of 50 problem classes, with 596 instances in total. Our recommended reformulations are well worthwhile even including overheads, especially on harder instances where solver time dominates. With a SAT solver we observed a geometric mean of 2.15 times speedup compared to a straightforward tailored model without recommended reformulations. Using a CP solver, we obtained a geometric mean of 5.96 times speedup for instances taking over 10 seconds to solve.
更多
查看译文
关键词
Constraint satisfaction,Common subexpression elimination,Modelling,Reformulation,Propositional satisfiability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要