谷歌浏览器插件
订阅小程序
在清言上使用

An RNA Structure-Mediated, Posttranscriptional Model of Human Α-1-antitrypsin Expression.

Proceedings of the National Academy of Sciences of the United States of America(2017)

引用 58|浏览32
暂无评分
摘要
Chronic obstructive pulmonary disease (COPD) affects over 65 million individuals worldwide, where α-1-antitrypsin deficiency is a major genetic cause of the disease. The α-1-antitrypsin gene, SERPINA1, expresses an exceptional number of mRNA isoforms generated entirely by alternative splicing in the 5'-untranslated region (5'-UTR). Although all SERPINA1 mRNAs encode exactly the same protein, expression levels of the individual mRNAs vary substantially in different human tissues. We hypothesize that these transcripts behave unequally due to a posttranscriptional regulatory program governed by their distinct 5'-UTRs and that this regulation ultimately determines α-1-antitrypsin expression. Using whole-transcript selective 2'-hydroxyl acylation by primer extension (SHAPE) chemical probing, we show that splicing yields distinct local 5'-UTR secondary structures in SERPINA1 transcripts. Splicing in the 5'-UTR also changes the inclusion of long upstream ORFs (uORFs). We demonstrate that disrupting the uORFs results in markedly increased translation efficiencies in luciferase reporter assays. These uORF-dependent changes suggest that α-1-antitrypsin protein expression levels are controlled at the posttranscriptional level. A leaky-scanning model of translation based on Kozak translation initiation sequences alone does not adequately explain our quantitative expression data. However, when we incorporate the experimentally derived RNA structure data, the model accurately predicts translation efficiencies in reporter assays and improves α-1-antitrypsin expression prediction in primary human tissues. Our results reveal that RNA structure governs a complex posttranscriptional regulatory program of α-1-antitrypsin expression. Crucially, these findings describe a mechanism by which genetic alterations in noncoding gene regions may result in α-1-antitrypsin deficiency.
更多
查看译文
关键词
translation efficiency,RNA secondary structure,uORFs,SERPINA1,alpha-1-antitrypsin deficiency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要