Manifold Regularization for Kernelized LSTD

arXiv: Learning(2017)

引用 23|浏览70
暂无评分
摘要
Policy evaluation or value function or Q-function approximation is a key procedure in reinforcement learning (RL). It is a necessary component of policy iteration and can be used for variance reduction in policy gradient methods. Therefore its quality has a significant impact on most RL algorithms. Motivated by manifold regularized learning, we propose a novel kernelized policy evaluation method that takes advantage of the intrinsic geometry of the state space learned from data, in order to achieve better sample efficiency and higher accuracy in Q-function approximation. Applying the proposed method in the Least-Squares Policy Iteration (LSPI) framework, we observe superior performance compared to widely used parametric basis functions on two standard benchmarks in terms of policy quality.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要