## AI helps you reading Science

## AI Insight

AI extracts a summary of this paper

Weibo:

# Seq2Seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence Models.

IEEE Transactions on Visualization and Computer Graphics, no. 1 (2019): 353-363

EI WOS

Full Text

Weibo

Abstract

Neural sequence-to-sequence models have proven to be accurate and robust for many sequence prediction tasks, and have become the standard approach for automatic translation of text. The models work with a five-stage blackbox pipeline that begins with encoding a source sequence to a vector space and then decoding out to a new target sequen...More

Code:

Data:

Introduction

- Deep learning approaches based on neural networks have shown signif- the source sequence.
- With enough data, these models provide a general icant performance improvements on many artificial intelligence tasks.
- The complex structure of these networks often makes it dif- While the impact of seq2seq models has been clear, the added comficult to provide explanations for their predictions.
- The high-dimensional internal represenshown state-of-the-art performance in a broad range of applications tations make it difficult to analyze the model as it transforms the data

Highlights

- Deep learning approaches based on neural networks have shown signif- the source sequence
- To motivate the need for our contributions, we present a representative
- Seq2Seq-Vis is the result of an iterative design process and discuswhen using rule-based techniques, a user can explore the provenance und so haben wir entdeckt , dass es eine unendliche
an gehäkelten hyperbolischen wesen gibt - In regular of a decision through rules activated for a given output
- For vectors with many connections, we reduce visual clutter by computing a concave hull for all related neighbors and highlight the related dots within the hull
- We considered several different variants for both main views of the system

Methods

**DESIGN OF**

Seq2Seq-Vis less problematic in previous generations of AI systems. For instance als erstes muss man beachten , dass es gegenden auf dieser welt gibt , die wegen mangelnder aufmerksamkeit im dunkeln stehen .

Seq2Seq-Vis is the result of an iterative design process and discuswhen using rule-based techniques, a user can explore the provenance und so haben wir entdeckt , dass es eine unendlichean gehäkelten hyperbolischen wesen gibt .

sions between experts in machine learning and visualization.- Seq2Seq-Vis is the result of an iterative design process and discuswhen using rule-based techniques, a user can explore the provenance und so haben wir entdeckt , dass es eine unendliche
an gehäkelten hyperbolischen wesen gibt. - Meetings the authors evaluated a series of low-fidelity prototypes and tested mistake in the system, an analyst can 1) identify which rule misfired, 2) them wir vergrößern das blickfeld , wir zoomen raus , durch eine nukleare pore , welche der zugang zu dem teil , der die dna beherbergt , ist und nukleus genannt wird .

Conclusion

- Seq2Seq-Vis is a tool to facilitate deep exploration of all stages of a seq2seq model.
- The authors apply our set of goals to deep learning models that are traditionally difficult to interpret.
- Being an open source project, the authors see future work in evaluating the longitudinal feedback from real-world users for suggested improvements.
- The authors already observed some initial quantitative and qualitative feedback.
- More 5,500 page views have been recorded and 156 users liked the project on Github.
- The most requested new feature is integration of the tool with other ML frameworks

Related work

- Bemerkungen gesprochen hat , umzusetzen .
~~On the face of it these two proposals appear to b~~

Various methods [4, 34]

have been proposed to generate explanations procedural changes to facilitate freedom of movement give e ect to the recent court cases Mrs Ber@@ ger ref for deep learning model predictions. Understandingretmhaerkms .~~ll remains a difficult task. To better address the specific issuZewseiteonfs eorwuährntue esredriesN,ach@@ wahlen . we narrow the target audience for our proposed tool. Following the~~~~Secondly , he also mentioned their by @-@ ele classifications by Strobelt et al [48] and Hohman et al [13], our tool aims at model developers who have at least a conceptuGaelsteurnn -deeinrigsetvaonndIhinnenghaben das bereits komm@ Wirtscha s@@ ausschuß von der Verbesserung der wir of how the model works. This is opposed to end userisn,Ewurohpoa . are agnostic to the technique used to arrive at a specific result. Follo~~iYnesgterHdaoy ,hams soamne eoftyou have noted , the Com al., analysis itself can broadly be divided into global Mmoonedtaeryl Aanaiarslryesfeirsredantodthe improvement in the e instance-based analysis. In global model analysis, thEuerompeo. ~~commonly seen methods are visualizations of the internal struDcetruAbrgeeorodnfettersapriancheaduch von der modernenTec deep learning models. Instance-based analysis may~~eThceohuonpolueradblewMeimthber also mentioned mode interactive experimentation with the goal of understanDdieinKogmmaispsaarirntsipcrauclhavron der Bedeutung nationa prediction using the local information around only oStnaaetenininpduertKo[m3m8u]n.ikations@@ politik .

~~Demonstrates the utility of our tool through several real-world sequence-to-sequence use cases on large-scale models~~~~Proposes SEQ2SEQ-VIS , a visual analytics tool that satisfies this criteria by providing support for the following three goals: M~~~~Presents a guiding example illustrating how a typical model understanding- and debugging session looks like for an analyst~~

~~D. Alvarez-Melis and T. S. Jaakkola. A causal framework for explaining the predictions of black-box sequence-to-sequence models. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pp. 412–421, 2017.~~~~S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Muller, and W. Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.~~~~D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.~~~~O. Biran and C. Cotton. Explanation and justification in machine learning: A survey. In IJCAI-17 Workshop on Explainable AI (XAI), p. 8, 2017.~~~~D. Cashman, G. Patterson, A. Mosca, and R. Chang. Rnnbow: Visualizing learning via backpropagation gradients in recurrent neural networks. In Workshop on Visual Analytics for Deep Learning (VADL), 2017.~~~~Y. Ding, Y. Liu, H. Luan, and M. Sun. Visualizing and understanding neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1150–1159, 2017.~~~~D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higherlayer features of a deep network. Technical report, University of Montreal, 2009.~~~~J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin. A Convolutional Encoder Model for Neural Machine Translation. ArXiv e-prints, Nov. 2016.~~~~J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional Sequence to Sequence Learning. ArXiv e-prints, May 2017.~~~~H. Hassan Awadalla, A. Aue, C. Chen, V. Chowdhary, J. Clark, C. Federmann, X. Huang, M. Junczys-Dowmunt, W. Lewis, M. Li, S. Liu, T.-Y. Liu, R. Luo, A. Menezes, T. Qin, F. Seide, X. Tan, F. Tian, L. Wu, S. Wu, Y. Xia, D. Zhang, Z. Zhang, and M. Zhou. Achieving human parity on automatic chinese to english news translation. March 2018.~~~~R. Henderson and R. Rothe. Picasso: A modular framework for visualizing the learning process of neural network image classifiers. Journal of Open Research Software, 5(1), 2017.~~~~A. Hern. Facebook translates ’good morning’ into ’attack them’, leading to arrest. The Guardian, Oct 2017.~~~~F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep learning: An interrogative survey for the next frontiers. arXiv preprint arXiv:1801.06889, 2018.~~~~J. Johnson, M. Douze, and H. Jegou. Billion-scale similarity search with gpus. arXiv preprint arXiv:1702.08734, 2017.~~~~M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. Viegas, M. Wattenberg, G. Corrado, et al. Google’s multilingual neural machine translation system: enabling zero-shot translation. arXiv preprint arXiv:1611.04558, 2016.~~~~M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau. Activis: Visual exploration of industry-scale deep neural network models. IEEE transactions on visualization and computer graphics, 24(1):88–97, 2018.~~~~A. Karpathy, J. Johnson, and F.-F. Li. Visualizing and understanding recurrent networks. ICLR Workshops, 2015.~~~~G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-Source Toolkit for Neural Machine Translation. ArXiv e-prints.~~~~P. Koehn and R. Knowles. Six challenges for neural machine translation. arXiv preprint arXiv:1706.03872, 2017.~~~~P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. arXiv preprint arXiv:1703.04730, 2017.~~~~J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual inspection of black-box machine learning models. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 5686–5697. ACM, 2016.~~~~J. B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2):115–129, 1964.~~~~Q. V. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado, K. C. 0010, J. Dean, and A. Y. Ng. Building high-level features using large scale unsupervised learning. ICML, 2012.~~~~Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278– 2324, 1998.~~~~J. Lee, J.-H. Shin, and J.-S. Kim. Interactive visualization and manipulation of attention-based neural machine translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 121–126, 2017.~~~~T. Lei, R. Barzilay, and T. S. Jaakkola. Rationalizing neural predictions. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp. 107–117, 2016.~~~~J. Li, X. Chen, E. Hovy, and D. Jurafsky. Visualizing and Understanding Neural Models in NLP. In NAACL, pp. 1–10. Association for Computational Linguistics, San Diego, California, jun 2016.~~~~J. Li, W. Monroe, and D. Jurafsky. Understanding neural networks through representation erasure. arXiv preprint arXiv:1612.08220, 2016.~~~~P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198, 2018.~~~~L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.~~~~C. Mauro, G. Christian, and F. Marcello. Wit3: Web inventory of transcribed and translated talks. In Conference of European Association for Machine Translation, pp. 261–268, 2012.~~~~Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu. Understanding hidden memories of recurrent neural networks. arXiv preprint arXiv:1710.10777, 2017.~~~~R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang, et al. Abstractive text summarization using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.~~~~M. Narayanan, E. Chen, J. He, B. Kim, S. Gershman, and F. Doshi-Velez. How do humans understand explanations from machine learning systems? an evaluation of the human-interpretability of explanation. arXiv preprint arXiv:1802.00682, 2018.~~~~A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436, 2015.~~~~C. Olah and S. Carter. Attention and augmented recurrent neural networks. Distill, 2016. doi: 10.23915/distill.00001~~~~C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and A. Mordvintsev. The building blocks of interpretability. Distill, 3(3):e10, 2018.~~~~D. Park, S. Kim, J. Lee, J. Choo, N. Diakopoulos, and N. Elmqvist. Conceptvector: text visual analytics via interactive lexicon building using word embedding. IEEE transactions on visualization and computer graphics, 24(1):361–370, 2018.~~~~R. Paulus, C. Xiong, and R. Socher. A deep reinforced model for abstractive summarization. arXiv preprint arXiv:1705.04304, 2017.~~~~F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikitlearn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.~~~~M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM, 2016.~~~~A. S. Ross, M. C. Hughes, and F. Doshi-Velez. Right for the right reasons: Training differentiable models by constraining their explanations. arXiv preprint arXiv:1703.03717, 2017.~~~~A. Ruckleand I. Gurevych. End-to-end non-factoid question answering with an interactive visualization of neural attention weights. Proceedings of ACL 2017, System Demonstrations, pp. 19–24, 2017.~~~~A. M. Rush, S. Chopra, and J. Weston. A neural attention model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.~~~~A. See, P. J. Liu, and C. D. Manning. Get to the point: Summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368, 2017.~~~~K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.~~~~D. Smilkov, S. Carter, D. Sculley, F. B. Viegas, and M. Wattenberg. Direct-manipulation visualization of deep networks. arXiv preprint arXiv:1708.03788, 2017.~~~~H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent neural networks. IEEE transactions on visualization and computer graphics, 24(1):667–676, 2018.~~~~I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pp. 3104–3112, 2014.~~~~A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pp. 6000–6010, 2017.~~~~Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.~~~~K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In International Conference on Machine Learning, pp. 2048–2057, 2015.~~~~J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.~~~~M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In Computer Vision–ECCV, vol. 8689, pp. 818–833. Springer, 2014. doi: 10.1007/978-3-319-10590-1 53~~~~L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling. Visualizing deep neural network decisions: Prediction difference analysis. ICML, 2017.~~

页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果，我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问，可以通过电子邮件方式联系我们：report@aminer.cn