Write-rationing garbage collection for hybrid memories.

PLDI(2018)

引用 60|浏览51
暂无评分
摘要
Emerging Non-Volatile Memory (NVM) technologies offer high capacity and energy efficiency compared to DRAM, but suffer from limited write endurance and longer latencies. Prior work seeks the best of both technologies by combining DRAM and NVM in hybrid memories to attain low latency, high capacity, energy efficiency, and durability. Coarsegrained hardware and OS optimizations then spread writes out (wear-leveling) and place highly mutated pages in DRAM to extend NVM lifetimes. Unfortunately even with these coarse-grained methods, popular Java applications exact impractical NVM lifetimes of 4 years or less. This paper shows how to make hybrid memories practical, without changing the programming model, by enhancing garbage collection in managed language runtimes. We find object write behaviors offer two opportunities: (1) 70% of writes occur to newly allocated objects, and (2) 2% of objects capture 81% of writes to mature objects. We introduce writerationing garbage collectors that exploit these fine-grained behaviors. They extend NVM lifetimes by placing highly mutated objects in DRAM and read-mostly objects in NVM. We implement two such systems. (1) Kingsguard-nursery places new allocation in DRAM and survivors in NVM, reducing NVM writes by 5× versus NVM only with wear-leveling. (2) Kingsguard-writers (KG-W) places nursery objects in DRAM and survivors in a DRAM observer space. It monitors all mature object writes and moves unwritten mature objects from DRAM to NVM. Because most mature objects are unwritten, KG-W exploits NVM capacity while increasing NVM lifetimes by 11×. It reduces the energy-delay product by 32% over DRAM-only and 29% over NVM-only. This work opens up new avenues for making hybrid memories practical.
更多
查看译文
关键词
Garbage collection, Hybrid DRAM-NVM memories, Managed runtimes, Non-volatile memory (NVM)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要