Introgression of group 4 and 7 chromosomes of . in wheat enhances grain iron and zinc density

Molecular Breeding(2011)

引用 36|浏览12
暂无评分
摘要
Dietary deficiency of iron and zinc micronutrients affects more than two billion people worldwide. Breeding for micronutrient-dense crops is the most sustainable and cost-effective approach for alleviation of micronutrient malnutrition. Three accessions of Aegilops peregrina (Hack.) Maire & Weill (2n = 28, UPUPSPSP), selected for high grain iron and zinc concentration were crossed with Triticum aestivum L. cv. Chinese Spring (Ph I ). The sterile F1 hybrids were backcrossed with elite wheat cultivars to get fertile BC2F2 derivatives. Some of the fertile BC2F2 derivatives showed nearly 100% increase in grain iron and more than 200% increase in grain zinc concentration compared to the recipient wheat cultivars. The development of derivatives with significantly higher grain micronutrients, high thousand-grain weight and harvest index suggests that the enhanced micronutrient concentration is due to the distinct genetic system of Ae. peregrina and not to the concentration effect. Genomic in situ hybridization, comparison of introgressed chromosomes with the standard karyotype of Ae. peregrina and simple sequence repeat marker analysis revealed the introgression of 7SP chromosomes in five selected derivatives, 7UP in four, group 4 and 4SP in three and a translocated 5UP of Ae. peregrina in one of the selected derivatives. Molecular marker analysis using the introgressed chromosome markers indicated that two of the BC2F3 progenies were stabilized as disomic addition lines. It could, therefore, be concluded that the group 4 and 7 chromosomes of Ae. peregrina carry the genes for high grain iron and zinc concentration.
更多
查看译文
关键词
Iron,Zinc,Wheat,Ae,.,peregrina,Introgression,SSR markers,GISH
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要