Memory Augmented Policy Optimization for Program Synthesis with Generalization.

arXiv: Learning(2018)

引用 27|浏览134
暂无评分
摘要
This paper presents Memory Augmented Policy Optimization (MAPO): a novel policy optimization formulation that incorporates a memory buffer of promising trajectories to reduce the variance of policy gradient estimates for deterministic environments with discrete actions. The formulation expresses the expected return objective as a weighted sum of two terms: an expectation over a memory of trajectories with high rewards, and a separate expectation over the trajectories outside the memory. We propose 3 techniques to make an efficient training algorithm for MAPO: (1) distributed sampling from inside and outside memory with an actor-learner architecture; (2) a marginal likelihood constraint over the memory to accelerate training; (3) systematic exploration to discover high reward trajectories. MAPO improves the sample efficiency and robustness of policy gradient, especially on tasks with a sparse reward. We evaluate MAPO on weakly supervised program synthesis from natural language with an emphasis on generalization. On the WikiTableQuestions benchmark we improve the state-of-the-art by 2.5%, achieving an accuracy of 46.2%, and on the WikiSQL benchmark, MAPO achieves an accuracy of 74.9% with only weak supervision, outperforming several strong baselines with full supervision. Our code is open sourced at this https URL
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要