谷歌浏览器插件
订阅小程序
在清言上使用

Testing Framework for in-Hardware Verification of the Hardware Modules Generated Using HLS

2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)(2018)

引用 1|浏览11
暂无评分
摘要
High-Level Synthesis (HLS) allows Field Programmable Gate Array (FPGA) developers to easily implement complex applications in silicon, addressing the ever-growing size and complexity of modern embedded reconfigurable systems. Unfortunately, in spite of these advancements, new non-negligible verification problems arise. For instance, the co-simulation strategy may not provide trustworthy results due to the variable accuracy of simulation, or hardware synthesis issues (e.g. those related to signal routing) which are not detectable in the simulation. Hence, developers need new verification mechanisms to reduce the gap between the technology and the verification needs. In this paper, we propose a testing framework and a hardware verification platform based on FPGA technology in order to improve the verification accuracy and enable effortless and fully automatic in-hardware system validation. For instance, one of the mechanisms is the inclusion of physical configuration macros (e.g., clock rate configuration macro) and test assertions based on physical parameters in the verification environment (e.g., timing assertions). Experiment results demonstrate our approach in the context of a case study remaining the same testing technology independently of the module abstraction level.
更多
查看译文
关键词
Design for testability,testing framework,in-hardware verification,debug,high-level synthesis,FPGA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要