PASTA: PASsword-based Threshold Authentication.

ACM Conference on Computer and Communications Security(2018)

引用 65|浏览146
暂无评分
摘要
Token-based authentication is commonly used to enable a single-sign-on experience on the web, in mobile applications and on enterprise networks using a wide range of open standards and network authentication protocols: clients sign on to an identity provider using their username/password to obtain a cryptographic token generated with a master secret key, and store the token for future accesses to various services and applications. The authentication server(s) are single point of failures that if breached, enable attackers to forge arbitrary tokens or mount offline dictionary attacks to recover client credentials. Our work is the first to introduce and formalize the notion of password-based threshold token-based authentication which distributes the role of an identity provider among n servers. Any t servers can collectively verify passwords and generate tokens, while no t-1 servers can forge a valid token or mount offline dictionary attacks. We then introduce PASTA, a general framework that can be instantiated using any threshold token generation scheme, wherein clients can "sign-on" using a two-round (optimal) protocol that meets our strong notions of unforgeability and password-safety. We instantiate and implement our framework in C++ using two threshold message authentication codes (MAC) and two threshold digital signatures with different trade-offs. Our experiments show that the overhead of protecting secrets and credentials against breaches in PASTA, i.e. compared to a naive single server solution, is extremely low (1-5%) in the most likely setting where client and servers communicate over the internet. The overhead is higher in case of MAC-based tokens over a LAN (though still only a few milliseconds) due to public-key operations in PASTA. We show, however, that this cost is inherent by proving a symmetric-key only solution impossible.
更多
查看译文
关键词
passwords, token-based authentication, threshold cryptography, digital signature, message authentication code, oblivious pseudorandom function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要