numpywren: serverless linear algebra.

arXiv: Distributed, Parallel, and Cluster Computing(2018)

引用 64|浏览327
暂无评分
摘要
Linear algebra operations are widely used in scientific computing and machine learning applications. However, it is challenging for scientists and data analysts to run linear algebra at scales beyond a single machine. Traditional approaches either require access to supercomputing clusters, or impose configuration and cluster management challenges. In this paper we show how the disaggregation of storage and compute resources in so-called environments, combined with compute-intensive workload characteristics, can be exploited to achieve elastic scalability and ease of management. present numpywren, a system for linear algebra built on a serverless architecture. We also introduce LAmbdaPACK, a domain-specific language designed to implement highly parallel linear algebra algorithms in a serverless setting. We show that, for certain linear algebra algorithms such as matrix multiply, singular value decomposition, and Cholesky decomposition, numpywrenu0027s performance (completion time) is within 33% of ScaLAPACK, and its compute efficiency (total CPU-hours) is up to 240% better due to elasticity, while providing an easier to use interface and better fault tolerance. At the same time, we show that the inability of serverless runtimes to exploit locality across the cores in a machine fundamentally limits their network efficiency, which limits performance on other algorithms such as QR factorization. This highlights how cloud providers could better support these types of computations through small changes in their infrastructure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要