Effect of hyperthermia on calbindin-D 28k immunoreactivity in the hippocampal formation following transient global cerebral ischemia in gerbils.

NEURAL REGENERATION RESEARCH(2017)

引用 6|浏览28
暂无评分
摘要
Calbindin D-28K (CB), a Ca2+-binding protein, maintains Ca2+ homeostasis and protects neurons against various insults. Hyperthermia can exacerbate brain damage produced by ischemic insults. However, little is reported about the role of CB in the brain under hyperthermic condition during ischemic insults. We investigated the effects of transient global cerebral ischemia on CB immunoreactivity as well as neuronal damage in the hippocampal formation under hyperthermic condition using immunohistochemistry for neuronal nuclei (NeuN) and CB, and Fluoro-Jade B histofluorescence staining in gerbils. Hyperthermia (39.5 +/- 0.2 degrees C) was induced for 30 minutes before and during transient ischemia. Hyperthermic ischemia resulted in neuronal damage/death in the pyramidal layer of CA1-3 area and in the polymorphic layer of the dentate gyrus at 1, 2, 5 days after ischemia. In addition, hyperthermic ischemia significantly decreaced CB immunoreactivity in damaged or dying neurons at 1, 2, 5 days after ischemia. In brief, hyperthermic condition produced more extensive and severer neuronal damage/death, and reduced CB immunoreactivity in the hippocampus following transient global cerebral ischemia. Present findings indicate that the degree of reduced CB immunoreactivity might be related with various neuronal damage/death overtime and corresponding areas after ischemic insults.
更多
查看译文
关键词
nerve regeneration,hyperthermic condition,ischemia/reperfusion injury,subregions of hippocampus,delayed neuronal death,calbindin D-28k,neural regeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要