谷歌浏览器插件
订阅小程序
在清言上使用

Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil.

Chemosphere(2018)

引用 55|浏览9
暂无评分
摘要
In this study a NZVI was prepared by the liquid phase reduction method. The modified NZVI obtained was characterized by BET, TEM and XRD. The results showed that the iron in the PEG-4000 modified material is mainly zero-valent iron with a stable crystal structure. It has a uniform particle size, ranging from 20 to 80 nm, and a larger specific surface area than CTAB modified NZVI, SDS modified NZVI and commercial zero-valent iron. The two surfactants CTAB and SDS are also selected as solubilizers, the results showed that the two selected surfactants obviously solubilize trichloroethylene in soil. Compared with commercial zero-valent iron, PEG-4000 modified NZVI is better removed trichloroethylene from soil; Also, the optimal operational parameters were obtained. When the experimental conditions were: PEG-4000 modified NZVI dosage 1.0 g/L, CTAB/SDS concentration equal to the CMC, SDS concentration was 2.0 × CMC, CTAB was concentration 1.0 × CMC and the vibration speed 150 r/min, the removal efficiency of trichloroethylene in a soil-water system reached 100% after 4 h. Both NZVI combined with CTAB and NZVI combined with SDS followed fitted first order reaction kinetics during the removal of trichloroethylene and their reaction rate constant k was 0.6869 mg/(L·h) and 0.5659 mg/(L·h), respectively. According to the chloride ion detection test, the trichloroethylene degradation is mainly due to reductive dechlorination.
更多
查看译文
关键词
Modified nano zero-valent iron,Trichloroethylene,Surfactant,Soil remediation,Dechlorination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要