谷歌浏览器插件
订阅小程序
在清言上使用

Brownian diffusion of a particle at an air/liquid interface: the elastic (not viscous) response of the surface.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2017)

引用 11|浏览4
暂无评分
摘要
Here, the effect of the elastic response of the surface on the translational diffusion coefficient of a partly submerged-in-water spherical Brownian particle is considered. The elastic nature of the surface, mediated by the surface tension, generates an additional dissipative mechanism. Therefore, the collisions at the surface contribute to the diffusion as the source of the driving force and the dissipation results from the combined action of both elastic reaction of the surface and viscous dissipation. However, it can be estimated that the surface elastic mechanism is several orders of magnitude greater than the viscous one. This simple yet physically plausible approach leads us to assume that the diffusion on the surface is proportional to a power of the number of collisions and, consequently, the dissipative mechanisms are proportional to an inverse power of it. The lowering in dimensionality from 3 (bulk) to 2 (surface) also contributes to the decrease of diffusion. This model allows the reproduction of the reported experimental values of the surface/bulk dissipative force ratio. Additionally, we also compared the traditional viscous approach with other theoretical hydrodynamic treatments of the problem, which drastically failed to explain the experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要