Development and Implementation of Advanced Fitting Methods for the Calculation of Accurate Molecular Structures.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION(2017)

引用 42|浏览11
暂无评分
摘要
The determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical-chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of dynamical and environmental effects in tuning their overall behavior. For this purpose the so-called semiexperimental approach, based on a nonlinear least-squares fit of the moments of inertia associated with a set of available isotopologues, allows one to obtain very accurate results, without the unfavorable computational cost characterizing high-level quantum chemical methods. In the present work the MSR (Molecular Structure Refinement) software for the determination of equilibrium structures by means of the semiexperimental approach is presented, and its implementation is discussed in some detail. The software, which is interfaced with a powerful graphical user interface, includes different optimization algorithms, an extended error analysis, and a number of advanced features, the most remarkable ones concerning the choice of internal coordinates and the method of predicate observations. In particular, a new black-box scheme for defining automatically a suitable set of nonredundant internal coordinates of Al symmetry in place of the customary Z-matrix has been designed and tested. Finally, the implementation of the method of the predicate observations is discussed and validated for a set of test molecules. As an original application, the method is employed for the determination of the semiexperimental structure for the most stable conformer of glycine.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要