Graphene-based nonvolatile terahertz switch with asymmetric electrodes

SCIENTIFIC REPORTS(2018)

引用 17|浏览8
暂无评分
摘要
We propose a nonvolatile terahertz (THz) switch which is able to perform the switching with transient stimulus. The device utilizes graphene as its floating-gate layer, which changes the transmissivity of THz signal by trapping the tunneling charges. The conventional top-down electrode configuration is replaced by a left-right electrode configuration, so THz signals could transmit through this device with the transmissivity being controlled by voltage pulses. The two electrodes are made of metals with different work functions. The resultant asymmetrical energy band structure ensures that both electrical programming and erasing are viable. With the aid of localized surface plasmon resonances in graphene ribbon arrays, the modulation depth is 89% provided that the Femi level of graphene is tuned between 0 and 0.2 eV by proper voltage pulses.
更多
查看译文
关键词
Optical properties and devices,Optoelectronic devices and components,Silicon photonics,Terahertz optics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要