Interstitial Mo-Assisted Photovoltaic Effect in Multilayer MoSe2 Phototransistors.

ADVANCED MATERIALS(2018)

引用 53|浏览75
暂无评分
摘要
Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe2 ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W-1 ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe2 TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe2 phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications.
更多
查看译文
关键词
2D materials,interstitial effects,MoSe2,phototransistors,photovoltaics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要