谷歌浏览器插件
订阅小程序
在清言上使用

Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction

NATURE CELL BIOLOGY(2018)

引用 158|浏览15
暂无评分
摘要
A robust nanopillar platform with increased spatial resolution reveals that perinuclear forces, originating from stress fibres spanning the nucleus of fibroblasts, are significantly higher on these nanostructured substrates than the forces acting on peripheral adhesions. Many perinuclear adhesions embrace several nanopillars at once, pulling them into β 1-integrin- and zyxin-rich clusters, which are able to translocate in the direction of cell motion without losing their tensile strength. The high perinuclear forces are greatly reduced upon inhibition of cell contractility or actin polymerization and disruption of the actin cap by KASH dominant-negative mutant expression. LMNA null fibroblasts have higher peripheral versus perinuclear forces, impaired perinuclear β 1 -integrin recruitment, as well as YAP nuclear translocation, functional alterations that can be rescued by lamin A expression. These highly tensed actin-cap fibres are required for YAP nuclear signalling and thus play far more important roles in sensing nanotopographies and mechanochemical signal conversion than previously thought.
更多
查看译文
关键词
Actin,Mechanotransduction,Nuclear envelope,Stress fibres,Life Sciences,general,Cell Biology,Cancer Research,Developmental Biology,Stem Cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要