A cross-domain charge interaction governs the activity of NO synthase

Journal of Biological Chemistry(2018)

引用 13|浏览10
暂无评分
摘要
NO synthase (NOS) enzymes perform interdomain electron transfer reactions during catalysis that may rely on complementary charge interactions at domain-domain interfaces. Guided by our previous results and a computer-generated domain-docking model, we assessed the importance of cross-domain charge interactions in the FMN-to-heme electron transfer in neuronal NOS(nNOS). We reversed the charge of three residues (Glu-762, Glu-816, and Glu-819) that form an electronegative triad on the FMN domain and then individually reversed the charges of three electropositive residues (Lys-423, Lys-620, and Lys-660) on the oxygenase domain (NOSoxy), to potentially restore a cross-domain charge interaction with the triad, but in reversed polarity. Charge reversal of the triad completely eliminated heme reduction and NO synthesis in nNOS. These functions were partly restored by the charge reversal at oxygenase residue Lys-423, but not at Lys-620 or Lys-660. Full recovery of heme reduction was probably muted by an accompanying change in FMN midpoint potential that made electron transfer to the heme thermodynamically unfavorable. Our results provide direct evidence that cross-domain charge pairing is required for the FMN-to-heme electron transfer in nNOS. The unique ability of charge reversal at position 423 to rescue function indicates that it participates in an essential cross-domain charge interaction with the FMN domain triad. This supports our domain-docking model and suggests that it may depict a productive electron transfer complex formed during nNOS catalysis.
更多
查看译文
关键词
electron transport,flavin,flavoprotein,mutagenesis,nitric oxide,nitric oxide synthase,oxidation-reduction (redox),domain motion,heme reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要