Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana.

NEW PHYTOLOGIST(2017)

引用 57|浏览12
暂无评分
摘要
Plants are commonly exposed to abiotic and biotic stresses. We used 350 Arabidopsis thaliana accessions grown under controlled conditions. We employed genome-wide association analysis to investigate the genetic architecture and underlying loci involved in genetic variation in resistance to: two specialist insect herbivores, Pieris rapae and Plutella xylostella; and combinations of stresses, i.e. drought followed by P. rapae and infection by the fungal pathogen Botrytis cinerea followed by infestation by P. rapae. We found that genetic variation in resistance to combined stresses by drought plus P. rapae was limited compared with B. cinerea plus P. rapae or P. rapae alone. Resistance to the two caterpillars is controlled by different genetic components. There is limited overlap in the quantitative trait loci (QTLs) underlying resistance to combined stresses by drought plus P. rapae or B. cinerea plus P. rapae and P. rapae alone. Finally, several candidate genes involved in the biosynthesis of aliphatic glucosinolates and proteinase inhibitors were identified to be involved in resistance to P. rapae and P. xylostella, respectively. This study underlines the importance of investigating plant responses to combinations of stresses. The value of this approach for breeding plants for resistance to combinatorial stresses is discussed.
更多
查看译文
关键词
abiotic stress,biotic stress,combined stresses,genome-wide association,specialist herbivores
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要