Field-Induced Antipolar-Polar Structural Transformation And Giant Electrostriction In Organic Crystal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2018)

引用 22|浏览11
暂无评分
摘要
The field-induced antipolar polar structural transition in an organic antiferroelectric 2-trifluorome-thylnaphthimidazole crystal is investigated by performing synchrotron X-ray diffraction. The polarities of all of the hydrogen-bonded chains become parallel with each other in the presence of an external electric field. The switching is accompanied by a giant electrostriction, which provides 1 order of magnitude larger strain than the piezoelectric strain of the organic ferroelectrics: croconic acid and poly(vinylidene fluoride); however, it is comparable to those of typical commercial piezoelectric ceramics. The crystal structure analysis with electric field shows that the origin of the observed giant electrostriction can be attributed to the shear strain that emerges from the polarity switching of the hydrogen-bonded chains. The antipolar polar structural transition in antiferroelectrics could be employed for the development of high-performance electrostrictive organic materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要