N-glycan structures of human alveoli provide insight into influenza A virus infection and pathogenesis.

FEBS JOURNAL(2018)

引用 27|浏览32
暂无评分
摘要
The rapidly evolvable influenza A virus has caused pandemics linked to millions of deaths in the past century. Influenza A viruses are categorized by H (hemagglutinin; HA) and N (neuraminidase; NA) proteins expressed on the viral envelope surface. Analyses of past pandemics suggest that the HA gene segment comes from a nonhuman virus, which is then introduced into an immunologically naive human population with potentially devastating consequences. As a prerequisite for infection, the nonhuman HA molecules of H1-H16 viruses must be able to bind to specific sialyl receptors on the host cell surface along the human respiratory tract. Thus, additional insight into the structures of host cell glycans and how different HAs interact with different glycans might provide new insight into the mechanisms underlying sustained infection and transmission in humans. In this work, we identified the sialyl N-glycans found in normal human alveoli and characterized the influenza viruses that preferentially bound to these different structures. We also determined the amino acid changes in HA that were linked to a switch of receptor-binding preference from nonhuman to pandemic, as well as pandemic to seasonal. Our data provide insight into why seasonal viruses are associated with reduced alveolar infection and damage and suggest new considerations for designing anti-HA vaccines and drugs. The results provide a better understanding of viral tropism and pathogenesis in humans that will be important for prediction and surveillance of zoonotic, pandemic, and epidemic influenza outbreaks. DatabaseThe novel hemagglutinin nucleotide sequences reported here were deposited in GISAID under the accession numbers of EPI685738 for A/Yamaguchi/20/2006(H1N1) and EPI685740 for A/Kitakyushu/10/2006(H1N1).
更多
查看译文
关键词
hemagglutinins,human alveoli,influenza viruses,N-glycans,short,long receptors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要