谷歌浏览器插件
订阅小程序
在清言上使用

Interaction of HuDA and PABP at 5'UTR of Mouse Insulin2 Regulates Insulin Biosynthesis.

PloS one(2018)

引用 4|浏览4
暂无评分
摘要
Understanding the regulation of insulin biosynthesis is important as it plays a central role in glucose metabolism. The mouse insulin gene2 (Ins2) has two splice variants; long (Ins2L) and short (Ins2S), that differ only in their 5'UTR sequence and Ins2S is the major transcript which translate more efficiently as compared to Ins2L. Here, we show that cellular factors bind preferentially to the Ins2L 5'UTR, and that PABP and HuD can bind to Ins2 splice variants and regulate its translation. In vitro binding assay with insulin 5'UTR and different HuD isoforms indicate that the 'N' terminal region of HuD is important for RNA binding and insulin translation repression. Using reporter assay we showed that specifically full-length HuD A isoform represses translation of reporter containing insulin 5'UTR. We further show that PABP and HuD interact with each other in RNA-dependent manner and this interaction is affected by glucose and PDI (5'UTR associated translation activator). These results suggest that PABP interacts with HuD in basal glucose conditions making translation inhibitory complex, however upon glucose stimulation this association is affected and PABP is acted upon by PDI resulting in stimulation of insulin translation. Together, our findings snapshot the mechanism of post-transcriptional regulation of insulin biosynthesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要