Genome-Wide Profiling of DNA Methyltransferases in Mammalian Cells.

Methods in molecular biology (Clifton, N.J.)(2018)

引用 1|浏览14
暂无评分
摘要
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is currently the method of choice to determine binding sites of chromatin-associated factors in a genome-wide manner. Here, we describe a method to investigate the binding preferences of mammalian DNA methyltransferases (DNMT) based on ChIP-seq using biotin-tagging. Stringent ChIP of DNMT proteins based on the strong interaction between biotin and avidin circumvents limitations arising from low antibody specificity and ensures reproducible enrichment. DNMT-bound DNA fragments are ligated to sequencing adaptors, amplified and sequenced on a high-throughput sequencing instrument. Bioinformatic analysis gives valuable information about the binding preferences of DNMTs genome-wide and around promoter regions. This method is unconventional due to the use of genetically engineered cells; however, it allows specific and reliable determination of DNMT binding.
更多
查看译文
关键词
ChIP-seq,CpG islands,DNA methyltransferases,Immunoprecipitation,In vivo biotinylation,Next-generation sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要