Star-shaped polymer of β‑cyclodextrin-g-vitamin E TPGS for doxorubicin delivery and multidrug resistance inhibition.

Colloids and surfaces. B, Biointerfaces(2018)

引用 22|浏览4
暂无评分
摘要
Multidrug resistance (MDR) remains as an obstacle for effective cancer treatment. Herein, we developed a novel and efficient nanomedicine by virtue of the carrier characters and MDR inhibition effects of β-cyclodextrin (β-CD) and d-α-tocopheryl polyethylene glycol succinate (TPGS). A series of star-shaped polymers CD-g-TPGS with different TPGS substitution degree were synthesized for doxorubicin (DOX) delivery, where β-CD was identified as a core and TPGS as branches. These star polymers can self-assemble into nanoparticles with DOX. These nanoparticles showed no significant differences in size, zeta potential and morphology except for in vitro stability. They demonstrated good biocompatibility and enhanced cellular uptake in both drug sensitive and resistant cancer cells. Notably, the nanoparticles exhibited superiority of cytotoxicity in drug resistant cancer cells against free DOX. In vivo antitumor effect also demonstrated the improved cancer inhibition effect. This work suggests that star-shaped polymers CD-g-TPGS are promising drug carriers to overcome MDR in cancer treatment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要