谷歌浏览器插件
订阅小程序
在清言上使用

Effective remodelling of human osteoarthritic cartilage by SOX9 gene transfer and overexpression upon delivery of rAAV vectors in polymeric micelles.

MOLECULAR PHARMACEUTICS(2018)

引用 26|浏览6
暂无评分
摘要
Recombinant adeno-associated virus (rAAV) vectors are well suited carriers to provide durable treatments for human osteoarthritis (OA). Controlled release of rAAV from polymeric micelles was already shown to increase both the stability and bioactivity of the vectors while overcoming barriers, precluding effective gene transfer. In the present study, we examined the convenience of delivering rAAV vectors via poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) polymeric (PEO-PPO-PEO) micelles to transfer and overexpress the transcription factor SOX9 in monolayers of human OA chondrocytes and in experimentally created human osteochondral defects. Human osteoarthritic (OA) chondrocytes and human osteochondral defect models were produced using human OA cartilage obtained from patients subjected to total knee arthroplasty. Samples were genetically modified by adding a rAAV-FLAG-hsox9 vector in its free form or via polymeric micelles for 10 days relative to control conditions (unmodified cells). The effects of sox9 overexpression in human OA cartilage samples were monitored by biochemical, histological, and immunohistochemical analyses. Delivery of rAAV-FLAG-hsox9 via polymeric micelles enhanced the levels of sox9 expression compared with free vector administration, resulting in increased proteoglycan deposition and in a stimulated cell proliferation index in OA chondrocytes. Moreover, higher production of type II collagen and decreased hypertrophic events were noted in osteochondral defect cultures when compared with control conditions. Controlled therapeutic rAAV sox9 gene delivery using PEO-PPO-PEO micelles is a promising, efficient tool to promote the remodelling of human OA cartilage.
更多
查看译文
关键词
human osteoarthritic articular cartilage,rAAV vectors,SOX9 overexpression,PEO-PPO-PEO copolymers,polymeric micelles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要