Enhancement of the spin polarization of an Fe 3 O 4 (100) surface by nitric oxide adsorption.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2018)

引用 4|浏览24
暂无评分
摘要
The geometric, electronic and magnetic properties of a nitric oxide (NO) adsorbed Fe3O4(100) surface have been investigated using density functional theory (DFT) calculations. NO molecules preferentially bond with surface Fe(B) atoms via their N atoms. The generalized gradient approximation (GGA) is not recommended to be used in such a strongly correlated system since it provides not only an overestimation of the adsorption energy and an underestimation of the Fe(B)-N bond length, but also magnetic quenching of the adsorbate and the bonded Fe(B) atoms. In contrast, a tilted geometry and magnetization of the adsorbate and the bonded Fe(B) atom are obtained after including the strong on-site Coulomb interactions through a Hubbard term (GGA+U). The spin-down 2 pi* states of the NO molecule are filled and broadened due to the adsorbate-substrate interaction and the molecule-molecule interaction. The surface spin polarization close to the Fermi level is expected to be greatly enhanced by the NO adsorption which has significance for interface design in spintronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要