MicroRNA-132 controls water homeostasis through regulating MECP2-mediated vasopressin synthesis.

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY(2018)

引用 18|浏览34
暂无评分
摘要
Fine-tuning of the body's water balance is regulated by vasopressin (AVP), which induces the expression and apical membrane insertion of aquaporin-2 water channels and subsequent water reabsorption in the kidney. Here we demonstrate that silencing of microRNA-132 (miR-132) in mice causes severe weight loss due to acute diuresis coinciding with increased plasma osmolality, reduced renal total and plasma membrane expression of aquaporin-2, and abrogated increase in AVP levels. Infusion with synthetic AVP fully reversed the antagomir-132-induced diuresis, and low-dose intracerebroventricular administration of antagomir-132 similarly caused acute diuresis. Central and intracerebroventricular antagomir-132 injection both decreased hypothalamic AVP mRNA levels. At the molecular level, antagomir-132 increased the in vivo and in vitro mRNA expression of methyl-CpG-binding protein-2 (MECP2), which is a miR-132 target and which blocks AVP gene expression by binding its enhancer region. In line with this, treatment of hypothalamic N6 cells with a high-salt solution increased its miR-132 levels, whereas it attenuated endogenous Mecp2 mRNA levels. In conclusion, we identified miR-132 as a first miRNA regulating the osmotic balance by regulating the hypothalamic AVP gene mRNA expression.
更多
查看译文
关键词
microRNA,osmotic balance,posttranscriptional regulation,vasopressin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要