Simulations of interfacial tension of liquid-liquid ternary mixtures using optimized parameterization for coarse-grained models.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION(2018)

引用 6|浏览11
暂无评分
摘要
In this work, liquid liquid systems are studied by means of coarse-grained Monte Carlo simulations (CG-MC) and Dissipative Particle Dynamics (DPD). A methodology is proposed to reproduce liquid liquid equilibrium (LLE) and to provide variation of interfacial tension (IFT), as a function of the solute concentration. A key step is the parametrization method based on the use of the Flory-Huggins parameter between DPD beads to calculate solute/solvent interactions. Parameters are determined using a set of experimental compositional data of LLE, following four different approaches. These approaches are evaluated, and the results obtained are compared to analyze advantages/disadvantages of each one. These methodologies have been compared through their application on six systems: water/benzene/1,4-dioxane,water/chloroform/acetone, water/benzene/acetic acid, water/benzene/2-propanol, water/hexane/acetone, and water/hexane/2-propanol. CG-MC simulations in the Gibbs (NVT) ensemble have been used to check the validity of parametrization approaches for LLE reproduction. Then, CG-MC simulations in the osmotic (mu soluteNsolventPzzT) ensemble were carried out considering the two liquid phases with an explicit interface. This step allows one to work at the same bulk concentrations as the experimental data by imposing the precise bulk phase compositions and predicting the interface composition. Finally, DPD simulations were used to predict IFT values for different solute concentrations. Our results on variation of IFT with solute concentration in bulk phases are in good agreement with experimental data, but some deviations can be observed for systems containing hexane molecules.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要