EMR, a cytosolic-abundant ring finger E3 ligase, mediates ER-associated protein degradation in Arabidopsis.

NEW PHYTOLOGIST(2018)

引用 22|浏览42
暂无评分
摘要
Investigation of the endoplasmic reticulum-associated degradation (ERAD) system in plants led to the identification of ERAD-mediating RING finger protein (EMR) as a plant-specific ERAD E3 ligase from Arabidopsis. EMR was significantly up-regulated under endoplasmic reticulum (ER) stress conditions. The EMR protein purified from bacteria displayed high E3 ligase activity, and tobacco leaf-produced EMR mediated mildew resistance locus O-12 (MLO12) degradation in a proteasome-dependent manner. Subcellular localization and coimmunoprecipitation analyses showed that EMR forms a complex with ubiquitin-conjugating enzyme 32 (UBC32) as a cytosolic interaction partner. Mutation of EMR and RNA interference (RNAi) increased the tolerance of plants to ER stress. EMR RNAi in the bri1-5 background led to partial recovery of the brassinosteroid (BR)-insensitive phenotypes as compared with the original mutant plants and increased ER stress tolerance. The presented results suggest that EMR is involved in the plant ERAD system that affects BR signaling under ER stress conditions as a novel Arabidopsis ring finger E3 ligase mainly present in cytosol while the previously identified ERAD E3 components are typically membrane-bound proteins.
更多
查看译文
关键词
Arabidopsis thaliana,brassinosteroid (BR) signaling,E3 ligase,endoplasmic reticulum (ER) stress,endoplasmic reticulum-associated degradation (ERAD),misfolded proteins
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要