Galacturonate metabolism in anaerobic chemostat enrichment cultures: combined fermentation and acetogenesis by the dominant sp. nov. " Galacturonibacter soehngenii".

APPLIED AND ENVIRONMENTAL MICROBIOLOGY(2018)

引用 7|浏览16
暂无评分
摘要
Agricultural residues such as sugar beet pulp and citrus peel are rich in pectin, which contains galacturonic acid as a main monomer. Pectin-rich residues are underexploited as feedstocks for production of bulk chemicals or biofuels. The anaerobic, fermentative conversion of D-galacturonate in anaerobic chemostat enrichment cultures provides valuable information toward valorization of these pectin-rich feedstocks. Replicate anaerobic chemostat enrichments, with D-galacturonate as the sole limiting carbon source and inoculum from cow rumen content and rotting orange peels, yielded stable microbial communities, which were dominated by a novel Lachnospiraceae species, for which the name "Candidatus Galacturonibacter soehngenii" was proposed. Acetate was the dominant catabolic product, with formate and H-2 as coproducts. The observed molar ratio of acetate and the combined amounts of H-2 and formate deviated significantly from 1, which suggested that some of the hydrogen and CO2 formed during D-galacturonate fermentation was converted into acetate via the Wood-Ljungdahl acetogenesis pathway. Indeed, metagenomic analysis of the enrichment cultures indicated that the genome of "Candidatus G. soehngenii" encoded enzymes of the adapted Entner-Doudoroff pathway for D-galacturonate metabolism as well as enzymes of the Wood-Ljungdahl pathway. The simultaneous operation of these pathways may provide a selective advantage under D-galacturonate-limited conditions by enabling a higher specific ATP production rate and lower residual D-galacturonate concentration than would be possible with a strictly fermentative metabolism of this carbon and energy source. IMPORTANCE This study on D-galacturonate metabolism by open, mixed-culture enrichments under anaerobic, D-galacturonate-limited chemostat conditions shows a stable and efficient fermentation of D-galacturonate into acetate as the dominant organic fermentation product. This fermentation stoichiometry and population analyses provide a valuable baseline for interpretation of the conversion of pectin-rich agricultural feedstocks by mixed microbial cultures. Moreover, the results of this study provide a reference for studies on the microbial metabolism of D-galacturonate under different cultivation regimes.
更多
查看译文
关键词
acetogenesis,enrichment culture,fermentation,galacturonate,metagenomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要