The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability.

BEILSTEIN JOURNAL OF NANOTECHNOLOGY(2018)

引用 20|浏览1
暂无评分
摘要
In this paper, a new nanoscale double-gate junctionless tunneling field-effect transistor (DG-JL TFET) based on a Si1-xGex/Si/Ge heterojunction (HJ) structure is proposed to achieve an improved electrical performance. The effect of introducing the Si1-xGex material at the source side on improving the subthreshold behavior of the DG-JL TFET and on suppressing ambipolar conduction is investigated. Moreover, the impact of the Ge mole fraction in the proposed Si1-xGex source region on the electrical figures of merit (FoMs) of the transistor, including the swing factor and the I-ON/I-OFF ratio is analyzed. It is found that the optimized design with 60 atom % of Ge offers improved switching behavior and enhanced derived current capability at the nanoscale level, with a swing factor of 42 mV/dec and an I-ON/I-OFF ratio of 115 dB. Further, the scaling capability of the proposed Si1-xGex/Si/Ge DG-HJ-JL TFET structure is investigated and compared to that of a conventional Ge-DG-JL TFET design, where the optimized design exhibits an improved switching behavior at the nanoscale level. These results make the optimized device suitable for designing digital circuit for high-performance nanoelectronic applications.
更多
查看译文
关键词
ambipolar conduction,heterojunctions,junctionless tunneling field-effect transistor (JL TFET),nanoscale,SiGe
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要