The major β-catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation .

ELIFE(2018)

引用 64|浏览55
暂无评分
摘要
In vivo, the primary molecular mechanotransductive events mechanically initiating cell differentiation remain unknown. Here we find the molecular stretching of the highly conserved Y654-beta-catenin-D665-E-cadherin binding site as mechanically induced by tissue strain. It triggers the increase of accessibility of the Y654 site, target of the Src42A kinase phosphorylation leading to irreversible unbinding. Molecular dynamics simulations of the beta-catenin/E-cadherin complex under a force mimicking a 6 pN physiological mechanical strain predict a local 45% stretching between the two alpha-helices linked by the site and a 15% increase in accessibility of the phosphorylation site. Both are quantitatively observed using FRET lifetime imaging and non-phospho Y654 specific antibody labelling, in response to the mechanical strains developed by endogenous and magnetically mimicked early mesoderm invagination of gastrulating Drosophila embryos. This is followed by the predicted release of 16% of beta-catenin from junctions, observed in FRAP, which initiates the mechanical activation of the beta-catenin pathway process.
更多
查看译文
关键词
D. melanogaster,FRET-FLIM,beta-catenin,biochemistry,chemical biology,developmental biology,gastrulation,mechanotransduction,molecular dynamic simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要