谷歌浏览器插件
订阅小程序
在清言上使用

Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity.

Peptides(2018)

引用 45|浏览3
暂无评分
摘要
Traditional drugs used to treat hyperuricemia have adverse effects. In this study, to identify safer anti-hyperuricemic bioactive peptides isolated from food-derived protein hydrolysates, a hyperuricemia rat model induced by potassium oxonate (PO) was used to evaluate the activity of bonito hydrolysates (BH), dephenolised walnut hydrolysates (DWH), and soybean hydrolysates (SH). The serum uric acid level of rats in the BH group (95.4 ± 27.4 μM, p < 0.01) was significantly reduced compared to that in the model group (212.00 ± 30.00 μM) to a level even lower than that in allopurinol group (114.3 ± 53.0 μM). Furthermore, BH alleviated renal impairment caused by PO in vivo and exhibited the greatest xanthine oxidase (XOD) inhibitory activity (65.5 ± 8.0%) in vitro compared to the other hydrolysates. Two peptides identified from BH bound the catalytic site of XOD, among which the hydrophobic peptide WML entered the active site of XOD more easily compared to the hydrophilic peptide PGACSN, possibly because of hydrophobic interactions. The chemically synthesized WML demonstrated high XOD inhibitory effect compared to PGACSN and a significant change in the secondary structure of XOD. Therefore, hexapeptide PGACSN and tripeptide WML are partially responsible for the anti-hyperuricemic activity of BH, and hydrophobic amino acids play important roles in the XOD inhibitory activity of peptides.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要