Integration of Cell-Penetrating Peptides with Rod-like Bionanoparticles: Virus-Inspired Gene Silencing Technology.

NANO LETTERS(2018)

引用 49|浏览11
暂无评分
摘要
Inspired by the high gene transfer efficiency of viral vectors and to avoid side effects, we present here a 1D rod-like gene-silencing vector based on a plant virus. By decorating the transacting activator of transduction (TAT) peptide on the exterior surface, the TAT-modified tobacco mosaic virus (TMV) achieves a tunable isoelectric point (from similar to 3.5 to similar to 9.6) depending on the TAT dose. In addition to enhanced cell internalization, this plant virus based vector (TMV-TAT) acquired endo/lysosomal escape capacity without inducing lysosomal damage, resulting in both high efficiency and low cytotoxicity. By loading silencer green fluorescent protein (GFP) siRNA onto the TMV-TAT vector (siRNA@TMV-TAT) and interfering with GFP-expressing mouse epidermal stem cells (ESCs/GFP) in vitro, the proportion of GFP-positive cells could be knocked down to levels even lower than 15% at a concentration of similar to 100% cell viability. Moreover, by interfering with GFP-expressing highly metastatic hepatocellular carcinoma (MHCC97-H/GFP) tumors in vivo, treatment with siRNA@TMV-TAT complexes for 10 days achieved a GFP-negative rate as high as 80.8%. This work combines the high efficiency of viral vectors and the safety of nonviral vectors and may provide a promising strategy for gene-silencing technology.
更多
查看译文
关键词
Tobacco mosaic virus,cell-penetrating peptide,gene silence,endosomal escape,viral vector
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要