Comparison Of Single Particle Dynamics At The Center And On The Surface Of Equilibrium Glassy Films

JOURNAL OF CHEMICAL PHYSICS(2018)

引用 10|浏览7
暂无评分
摘要
Glasses prepared by vapor depositing molecules onto a properly prepared substrate can have enhanced kinetic stability when compared with glasses prepared by cooling from the liquid state. The enhanced stability is due to the high mobility of particles at the surface, which allows them to find lower energy configurations than for liquid cooled glasses. Here we use molecular dynamics simulations to examine the temperature dependence of the single particle dynamics in the bulk of the film and at the surface of the film. First, we examine the temperature dependence of the self-intermediate scattering functions for particles in the bulk and at the surface. We then examine the temperature dependence of the probability of the logarithm of single particle displacements for bulk and surface particles. Both bulk and surface particle displacements indicate populations of slow and fast particles, i.e., heterogeneous dynamics. We find that the temperature dependence of the surface dynamics mirrors the bulk despite being several orders of magnitude faster. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要