Lyophilized scaffolds fabricated from 3D-printed photocurable natural hydrogel for cartilage regeneration.

ACS applied materials & interfaces(2018)

引用 79|浏览29
暂无评分
摘要
Repair of cartilage defects is highly challenging in clinical treatment. Tissue engineering provides a promising approach for cartilage regeneration and repair. As a core component of tissue engineering, scaffolds have a crucial influence on cartilage regeneration, especially in immunocompetent large animal and human. Native polymers, such as gelatin and hyaluronic acid, have known as ideal biomimetic scaffold sources for cartilage regeneration. However, how to precisely control their structure, degradation rate, and mechanical properties suitable for cartilage regeneration remains a great challenge. To address these issues, a series of strategies were introduced in the current study to optimize the scaffold fabrication. Firstly, gelatin and hyaluronic acid were prepared into hydrogel and 3D printing was adopted to ensure precise control in both the outer 3D shape and internal pore structure. Secondly, methacrylic anhydride and a photoinitiator were introduced into the hydrogel system to make the material photocurable during 3D printing. Finally, lyophilization was used to further enhance mechanical properties and prolong degradation time. According to the current results, by integrating photocuring 3D printing and lyophilization techniques, gelatin and hyaluronic acid were successfully fabricated into human ear- and nose-shaped scaffolds and both scaffolds achieved shape similarity levels over 90% compared with the original digital models. The scaffolds with 50% infill density achieved proper internal pore structure suitable for cell distribution, adhesion, and proliferation. Besides, lyophilization further enhanced mechanical strength of the 3D-printed hydrogel and slowed its degradation rate matching to cartilage regeneration. Most importantly, the scaffolds combined with chondrocytes successfully regenerated mature cartilage with typical lacunae structure and cartilage-specific extracellular matrices both in vitro and in autologous goat model. The current study established novel scaffold-fabricated strategies for native polymers and provided a novel natural 3D scaffold with satisfactory outer shape, pore structure, mechanical strength, degradation rate, and weak immunogenicity for cartilage regeneration.
更多
查看译文
关键词
photocuring,3D printing,native polymers,cartilage regeneration,lyophilization,scaffold,gelatin,hyaluronic acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要